Data Manipulation

Code for Quiz 5. More practice with dplyr functions.

  1. Load the R pachages we will use.
  1. Read the data in the file, drug_cos.csv into R and assign it to drug_cos.
drug_cos  <- read_csv("https://estanny.com/static/week5/drug_cos.csv")
  1. Use `glimpse() to get a glimpse of your data.
glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
  1. Use distinct to subset distinc rows.
drug_cos %>% 
  distinct(year)
# A tibble: 8 x 1
   year
  <dbl>
1  2011
2  2012
3  2013
4  2014
5  2015
6  2016
7  2017
8  2018
  1. Use count() to count observations by group.
drug_cos %>% 
  count(year)
# A tibble: 8 x 2
   year     n
* <dbl> <int>
1  2011    13
2  2012    13
3  2013    13
4  2014    13
5  2015    13
6  2016    13
7  2017    13
8  2018    13
drug_cos %>% 
  count(name)
# A tibble: 13 x 2
   name                        n
 * <chr>                   <int>
 1 AbbVie Inc                  8
 2 Allergan plc                8
 3 Amgen Inc                   8
 4 Biogen Inc                  8
 5 Bristol Myers Squibb Co     8
 6 ELI LILLY & Co              8
 7 Gilead Sciences Inc         8
 8 Johnson & Johnson           8
 9 Merck & Co Inc              8
10 Mylan NV                    8
11 PERRIGO Co plc              8
12 Pfizer Inc                  8
13 Zoetis Inc                  8
drug_cos %>% 
  count(ticker, name)
# A tibble: 13 x 3
   ticker name                        n
   <chr>  <chr>                   <int>
 1 ABBV   AbbVie Inc                  8
 2 AGN    Allergan plc                8
 3 AMGN   Amgen Inc                   8
 4 BIIB   Biogen Inc                  8
 5 BMY    Bristol Myers Squibb Co     8
 6 GILD   Gilead Sciences Inc         8
 7 JNJ    Johnson & Johnson           8
 8 LLY    ELI LILLY & Co              8
 9 MRK    Merck & Co Inc              8
10 MYL    Mylan NV                    8
11 PFE    Pfizer Inc                  8
12 PRGO   PERRIGO Co plc              8
13 ZTS    Zoetis Inc                  8

Use filter() to extract rows that meet criteria

  1. Extract rows in non-consecutive years
drug_cos %>% 
  filter(year %in% c(2013, 2018))
# A tibble: 26 x 9
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet~ New Jer~        0.222       0.634     0.111 0.176
 2 ZTS    Zoet~ New Jer~        0.379       0.672     0.245 0.326
 3 PRGO   PERR~ Ireland         0.236       0.362     0.125 0.19 
 4 PRGO   PERR~ Ireland         0.178       0.387     0.028 0.088
 5 PFE    Pfiz~ New Yor~        0.634       0.814     0.427 0.51 
 6 PFE    Pfiz~ New Yor~        0.34        0.79      0.208 0.221
 7 MYL    Myla~ United ~        0.228       0.44      0.09  0.153
 8 MYL    Myla~ United ~        0.258       0.35      0.031 0.074
 9 MRK    Merc~ New Jer~        0.282       0.615     0.1   0.123
10 MRK    Merc~ New Jer~        0.313       0.681     0.147 0.206
# ... with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract every other year from 2012 to 2018
drug_cos %>% 
  filter(year %in% seq(2012, 2018, by = 2))
# A tibble: 52 x 9
   ticker name  location ebitdamargin grossmargin netmargin    ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl>  <dbl>
 1 ZTS    Zoet~ New Jer~        0.217       0.64      0.101  0.171
 2 ZTS    Zoet~ New Jer~        0.238       0.641     0.122  0.195
 3 ZTS    Zoet~ New Jer~        0.335       0.659     0.168  0.286
 4 ZTS    Zoet~ New Jer~        0.379       0.672     0.245  0.326
 5 PRGO   PERR~ Ireland         0.226       0.345     0.127  0.183
 6 PRGO   PERR~ Ireland         0.157       0.371     0.059  0.104
 7 PRGO   PERR~ Ireland        -0.791       0.389    -0.76  -0.877
 8 PRGO   PERR~ Ireland         0.178       0.387     0.028  0.088
 9 PFE    Pfiz~ New Yor~        0.447       0.82      0.267  0.307
10 PFE    Pfiz~ New Yor~        0.359       0.807     0.184  0.247
# ... with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract the tickers “PFE” and “MYL”
drug_cos %>% 
  filter(ticker %in% c("PEE", "MYL"))
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla~ United ~        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla~ United ~        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla~ United ~        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla~ United ~        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla~ United ~        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla~ United ~        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla~ United ~        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla~ United ~        0.258       0.35      0.031 0.074 0.028
# ... with 1 more variable: year <dbl>

Use select() to select, rename and reorder columns

  1. Select columns ticker, name and ros
drug_cos %>% 
  select(ticker, name, ros)
# A tibble: 104 x 3
   ticker name             ros
   <chr>  <chr>          <dbl>
 1 ZTS    Zoetis Inc     0.101
 2 ZTS    Zoetis Inc     0.171
 3 ZTS    Zoetis Inc     0.176
 4 ZTS    Zoetis Inc     0.195
 5 ZTS    Zoetis Inc     0.14 
 6 ZTS    Zoetis Inc     0.286
 7 ZTS    Zoetis Inc     0.321
 8 ZTS    Zoetis Inc     0.326
 9 PRGO   PERRIGO Co plc 0.178
10 PRGO   PERRIGO Co plc 0.183
# ... with 94 more rows
  1. Use select to exclude columns ticker, name and ros
drug_cos %>% 
  select(ticker, -name, -ros)
# A tibble: 104 x 1
   ticker
   <chr> 
 1 ZTS   
 2 ZTS   
 3 ZTS   
 4 ZTS   
 5 ZTS   
 6 ZTS   
 7 ZTS   
 8 ZTS   
 9 PRGO  
10 PRGO  
# ... with 94 more rows
  1. Rename and reorder columns with select
drug_cos %>% 
  select(year, ticker, headquarter =location, netmargin, roe)
# A tibble: 104 x 5
    year ticker headquarter       netmargin   roe
   <dbl> <chr>  <chr>                 <dbl> <dbl>
 1  2011 ZTS    New Jersey; U.S.A     0.058 0.069
 2  2012 ZTS    New Jersey; U.S.A     0.101 0.113
 3  2013 ZTS    New Jersey; U.S.A     0.111 0.612
 4  2014 ZTS    New Jersey; U.S.A     0.122 0.465
 5  2015 ZTS    New Jersey; U.S.A     0.071 0.285
 6  2016 ZTS    New Jersey; U.S.A     0.168 0.587
 7  2017 ZTS    New Jersey; U.S.A     0.163 0.488
 8  2018 ZTS    New Jersey; U.S.A     0.245 0.694
 9  2011 PRGO   Ireland               0.123 0.248
10  2012 PRGO   Ireland               0.127 0.236
# ... with 94 more rows

Question: filter and select

Use inputs from your quiz question filter and select and replace SEE QUIZ with inputs from your quiz and replace the ??? in the code

drug_cos %>% 
  filter(ticker %in% c("PFE", "MRK", "MBY")) %>% 
  select(ticker, year, ebitdamargin)
# A tibble: 16 x 3
   ticker  year ebitdamargin
   <chr>  <dbl>        <dbl>
 1 PFE     2011        0.371
 2 PFE     2012        0.447
 3 PFE     2013        0.634
 4 PFE     2014        0.359
 5 PFE     2015        0.289
 6 PFE     2016        0.267
 7 PFE     2017        0.353
 8 PFE     2018        0.34 
 9 MRK     2011        0.305
10 MRK     2012        0.33 
11 MRK     2013        0.282
12 MRK     2014        0.567
13 MRK     2015        0.298
14 MRK     2016        0.254
15 MRK     2017        0.278
16 MRK     2018        0.313

Question: rename

drug_cos %>% 
  filter(ticker %in% c("LLY", "MRK")) %>% 
  select(ticker, ros, return_on_equity = roe)
# A tibble: 16 x 3
   ticker   ros return_on_equity
   <chr>  <dbl>            <dbl>
 1 MRK    0.15             0.114
 2 MRK    0.182            0.113
 3 MRK    0.123            0.089
 4 MRK    0.409            0.248
 5 MRK    0.136            0.096
 6 MRK    0.117            0.092
 7 MRK    0.162            0.063
 8 MRK    0.206            0.199
 9 LLY    0.22             0.306
10 LLY    0.239            0.273
11 LLY    0.255            0.290
12 LLY    0.153            0.138
13 LLY    0.14             0.162
14 LLY    0.159            0.185
15 LLY    0.096           -0.015
16 LLY    0.155            0.264
  1. select ranges of columns
drug_cos %>% 
  select(ebitdamargin:netmargin)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# ... with 94 more rows
drug_cos %>% 
  select(4:6)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# ... with 94 more rows
  1. select helper functions
drug_cos %>% 
  select(ticker, contains("locat"))
# A tibble: 104 x 2
   ticker location         
   <chr>  <chr>            
 1 ZTS    New Jersey; U.S.A
 2 ZTS    New Jersey; U.S.A
 3 ZTS    New Jersey; U.S.A
 4 ZTS    New Jersey; U.S.A
 5 ZTS    New Jersey; U.S.A
 6 ZTS    New Jersey; U.S.A
 7 ZTS    New Jersey; U.S.A
 8 ZTS    New Jersey; U.S.A
 9 PRGO   Ireland          
10 PRGO   Ireland          
# ... with 94 more rows
drug_cos %>% 
  select(ticker, starts_with("r"))
# A tibble: 104 x 3
   ticker   ros   roe
   <chr>  <dbl> <dbl>
 1 ZTS    0.101 0.069
 2 ZTS    0.171 0.113
 3 ZTS    0.176 0.612
 4 ZTS    0.195 0.465
 5 ZTS    0.14  0.285
 6 ZTS    0.286 0.587
 7 ZTS    0.321 0.488
 8 ZTS    0.326 0.694
 9 PRGO   0.178 0.248
10 PRGO   0.183 0.236
# ... with 94 more rows
drug_cos %>% 
  select(year, ends_with("margin"))
# A tibble: 104 x 4
    year ebitdamargin grossmargin netmargin
   <dbl>        <dbl>       <dbl>     <dbl>
 1  2011        0.149       0.61      0.058
 2  2012        0.217       0.64      0.101
 3  2013        0.222       0.634     0.111
 4  2014        0.238       0.641     0.122
 5  2015        0.182       0.635     0.071
 6  2016        0.335       0.659     0.168
 7  2017        0.366       0.666     0.163
 8  2018        0.379       0.672     0.245
 9  2011        0.216       0.343     0.123
10  2012        0.226       0.345     0.127
# ... with 94 more rows

Use group_by to set up data for operations by group

  1. group_by
drug_cos %>% 
  group_by(ticker)
# A tibble: 104 x 9
# Groups:   ticker [13]
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet~ New Jer~        0.149       0.61      0.058 0.101
 2 ZTS    Zoet~ New Jer~        0.217       0.64      0.101 0.171
 3 ZTS    Zoet~ New Jer~        0.222       0.634     0.111 0.176
 4 ZTS    Zoet~ New Jer~        0.238       0.641     0.122 0.195
 5 ZTS    Zoet~ New Jer~        0.182       0.635     0.071 0.14 
 6 ZTS    Zoet~ New Jer~        0.335       0.659     0.168 0.286
 7 ZTS    Zoet~ New Jer~        0.366       0.666     0.163 0.321
 8 ZTS    Zoet~ New Jer~        0.379       0.672     0.245 0.326
 9 PRGO   PERR~ Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERR~ Ireland         0.226       0.345     0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
drug_cos %>% 
  group_by(year)
# A tibble: 104 x 9
# Groups:   year [8]
   ticker name  location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoet~ New Jer~        0.149       0.61      0.058 0.101
 2 ZTS    Zoet~ New Jer~        0.217       0.64      0.101 0.171
 3 ZTS    Zoet~ New Jer~        0.222       0.634     0.111 0.176
 4 ZTS    Zoet~ New Jer~        0.238       0.641     0.122 0.195
 5 ZTS    Zoet~ New Jer~        0.182       0.635     0.071 0.14 
 6 ZTS    Zoet~ New Jer~        0.335       0.659     0.168 0.286
 7 ZTS    Zoet~ New Jer~        0.366       0.666     0.163 0.321
 8 ZTS    Zoet~ New Jer~        0.379       0.672     0.245 0.326
 9 PRGO   PERR~ Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERR~ Ireland         0.226       0.345     0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>

Use summarize to calculate summary statistics

  1. Maximunm roe for all companies
drug_cos %>% 
  summarize( max_roe = max(roe))
# A tibble: 1 x 1
  max_roe
    <dbl>
1    1.31
drug_cos %>% 
  group_by(year) %>% 
  summarise( max_roe = max(roe))
# A tibble: 8 x 2
   year max_roe
* <dbl>   <dbl>
1  2011   0.451
2  2012   0.69 
3  2013   1.13 
4  2014   0.828
5  2015   1.31 
6  2016   1.11 
7  2017   0.932
8  2018   0.694
drug_cos %>% 
  group_by(ticker) %>% 
  summarise( max_roe = max(roe))
# A tibble: 13 x 2
   ticker max_roe
 * <chr>    <dbl>
 1 ABBV     1.31 
 2 AGN      0.184
 3 AMGN     0.585
 4 BIIB     0.334
 5 BMY      0.373
 6 GILD     1.04 
 7 JNJ      0.244
 8 LLY      0.306
 9 MRK      0.248
10 MYL      0.283
11 PFE      0.342
12 PRGO     0.248
13 ZTS      0.694

Question: summarize

Mean for year

drug_cos %>% 
  group_by(year) %>% 
  summarise(mean_ros = mean(ros)) %>% 
  filter(year == 2016)
# A tibble: 1 x 2
   year mean_ros
  <dbl>    <dbl>
1  2016    0.253

Median for year

drug_cos %>% 
  group_by(year) %>% 
  summarise(meadian_ros = median(ros)) %>% 
  filter(year == 2016)
# A tibble: 1 x 2
   year meadian_ros
  <dbl>       <dbl>
1  2016       0.286
  1. Pick a ratio and a year and compare to companies.
drug_cos %>% 
  filter(year == 2018) %>% 
  ggplot(aes(x = netmargin, y = reorder(name, netmargin))) +
  geom_col() +
   scale_x_continuous(labels = scales::percent) +
   labs(title = "Comparison of net margin",
        subtitle = "for drug companies during 2018",
        x = NULL, y = NULL) +
   theme_classic()

  1. Pick a company and a ratio and compare the ratio over time.
drug_cos %>% 
  filter(ticker == "PFE") %>% 
  ggplot(aes(x = year, y = netmargin)) +
  geom_col() +
   scale_y_continuous(labels = scales::percent) +
   labs(title = "Comparison of net margin",
        subtitle = "for Pfizer from 2011 to 2018",
        x = NULL, y = NULL) +
   theme_classic()
ggsave(filename = "preview.png",
       path = here::here("_posts", "2021-03-09-data-manipulation"))